By Topic

Delay-and-multiply clock regeneration in APD-based direct-detection optical OOK communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kiasaleh, K. ; Erick Jonsson Sch. of Eng. & Comput. Sci., Texas Univ., Dallas, Richardson, TX, USA

A clock recovery scheme for direct-detection optical on-off keying (OOK) communication systems with nonreturn-to-zero pulse shaping is proposed and investigated. In the suggested model, the optical field is detected with the aid of an avalanche photodiode (APD) photodetector, which is followed by a clock regeneration subsystem. The proposed clock recovery subsystem consists of a delay-and-multiply nonlinearity followed by a conventional phase-locked loop (PLL), tuned to the slot frequency of the desired optical OOK signal. Performance of the proposed system is obtained in terms of the signal-to-noise ratio (SNRL) of the linearized PLL device (or, equivalently, the inverse of phase, or timing, error variance) when background noise and receiver thermal noise are present. Numerical results are presented in order to explain the influence of noise processes on the performance of the proposed clock recovery subsystem. The performance of this system is also compared to that of an early-late gate and square-law symbol synchronizers

Published in:

Communications, IEEE Transactions on  (Volume:40 ,  Issue: 9 )