Cart (Loading....) | Create Account
Close category search window
 

Dynamic p-cycles selection in optical WDM mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kungmeng Lo ; Sch. of Eng. & Math., Edith Cowan Univ., Perth, WA, Australia ; Habibi, D. ; Phung, Q.V. ; Nguyen, H.N.
more authors

P-cycles have been recognized as a useful protection scheme in WDM mesh networks. This is a type of shared link protection that not only retains the mesh-like capacity efficiency, but also achieves the ring-like protection switching speed. However, finding the optimal set of p-cycles for protecting traffic demands is not a simple task and is an NP-hard problem. A general approach is to determine a set of candidate p-cycles and then determine optimal or near-optimal solutions by using integer linear programming (ILP) models or heuristics. In a dense mesh network, however, the number of candidate cycles is huge, and increases exponentially if the node number is increased. Thus, searching for a suitable set of efficient candidate cycles is crucial and imperative to balancing the computational time and the optimality of solutions. In this paper, we propose a dynamic P-cycles selection (DPS) algorithm that improves the efficiency of enumerating candidate p-cycles. The dynamic approach for cycle selection is based on the network state. In the DPS algorithm, all cycles are found and stored, then an efficient and sufficient set of p-cycles is extracted to achieve 100% working protection, minimize the spare capacity, and reduce time complexity.

Published in:

Networks, 2005. Jointly held with the 2005 IEEE 7th Malaysia International Conference on Communication., 2005 13th IEEE International Conference on  (Volume:2 )

Date of Conference:

16-18 Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.