By Topic

Design and analysis of a denial-of-service-resistant quality-of-service signaling protocol for MANETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hejmo, M. ; Dept. of Electr. & Comput. Eng., George Mason Univ., Fairfax, VA ; Mark, B.L. ; Zouridaki, C. ; Thomas, R.K.

Quality-of-service (QoS) signaling protocols for mobile ad hoc networks (MANETs) are highly vulnerable to attacks. In particular, a class of denial-of-service (DoS) attacks can severely cripple network performance with relatively little effort expended by the attacker. A distributed QoS signaling protocol that is resistant to a class of DoS attacks on signaling is proposed. The signaling protocol provides QoS for real-time traffic and employs mechanisms at the medium access control (MAC) layer, which serve to avoid potential attacks on network resource usage. The key MAC layer mechanisms that provide support for the QoS signaling scheme include sensing of available bandwidth, traffic policing, and rate monitoring, all of which are performed in a distributed manner by the mobile nodes. The proposed signaling scheme achieves a compromise between signaling protocols that require the maintenance of per-flow state and those that are completely stateless. The signaling scheme scales gracefully in terms of the number of nodes and/or traffic flows in the MANET. The authors analyze the security properties of the protocol and present simulation results to demonstrate its resistance to DoS attacks

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 3 )