By Topic

Stochastic mean-square performance analysis of an adaptive Hammerstein filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jeraj, Janez ; Dept. of Electr. & Comput. Eng., Univ. of Utah, Salt Lake City, UT, USA ; Mathews, V.J.

This paper presents an almost sure mean-square performance analysis of an adaptive Hammerstein filter for the case when the measurement noise in the desired response signal is a martingale difference sequence. The system model consists of a series connection of a memoryless nonlinearity followed by a recursive linear filter. A bound for the long-term time average of the squared a posteriori estimation error of the adaptive filter is derived using a basic set of assumptions on the operating environment. This bound consists of two terms, one of which is proportional to a parameter that depends on the step size sequences of the algorithm and the other that is inversely proportional to the maximum value of the increment process associated with the coefficients of the underlying system. One consequence of this result is that the long-term time average of the squared a posteriori estimation error can be made arbitrarily close to its minimum possible value when the underlying system is time-invariant.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 6 )