Cart (Loading....) | Create Account
Close category search window
 

Oversampled A/D conversion and error-rate dependence of nonbandlimited signals with finite rate of innovation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jovanovic, I. ; Swiss Fed. Inst. of Technol.-EPFL, Lausanne, Switzerland ; Beferull-Lozano, B.

We study the problem of A/D conversion and error-rate dependence of a class of nonbandlimited signals with finite rate of innovation. In particular, we analyze a continuous periodic stream of Diracs, characterized by a finite set of time positions and weights. Previous research has only considered sampling of this type of signals, ignoring the presence of quantization, necessary for any practical implementation. To this end, we first define the concept of consistent reconstruction and introduce corresponding oversampling in both time and frequency. High accuracy in a consistent reconstruction is achieved by enforcing the reconstructed signal to satisfy three sets of constraints, related to low-pass filtering, quantization and the space of continuous periodic streams of Diracs. We provide two schemes to reconstruct the signal. For the first one, we prove that the estimation mean squared error of the time positions is O(1/Rt2Rf3), where Rt and Rf are the oversampling ratios in time and frequency, respectively. For the second scheme, it is experimentally observed that, at the cost of higher complexity, the estimation accuracy lowers to O(1/Rt2Rf5). Our experimental results show a clear advantage of consistent over nonconsistent reconstruction. Regarding the rate, we consider a threshold crossing based scheme where, as opposed to previous research, both oversampling in time and in frequency influence the coding rate. We compare the error-rate behavior resulting, on the one hand, from increasing the oversampling in time and/or frequency, and, on the other hand, from decreasing the quantization stepsize.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.