By Topic

Log-determinant relaxation for approximate inference in discrete Markov random fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. J. Wainwright ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; M. I. Jordan

Graphical models are well suited to capture the complex and non-Gaussian statistical dependencies that arise in many real-world signals. A fundamental problem common to any signal processing application of a graphical model is that of computing approximate marginal probabilities over subsets of nodes. This paper proposes a novel method, applicable to discrete-valued Markov random fields (MRFs) on arbitrary graphs, for approximately solving this marginalization problem . The foundation of our method is a reformulation of the marginalization problem as the solution of a low-dimensional convex optimization problem over the marginal polytope. Exactly solving this problem for general graphs is intractable; for binary Markov random fields, we describe how to relax it by using a Gaussian bound on the discrete entropy and a semidefinite outer bound on the marginal polytope. This combination leads to a log-determinant maximization problem that can be solved efficiently by interior point methods, thereby providing approximations to the exact marginals. We show how a slightly weakened log-determinant relaxation can be solved even more efficiently by a dual reformulation. When applied to denoising problems in a coupled mixture-of-Gaussian model defined on a binary MRF with cycles, we find that the performance of this log-determinant relaxation is comparable or superior to the widely used sum-product algorithm over a range of experimental conditions.

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 6 )