By Topic

Analysis of noise coupling from a power distribution network to signal traces in high-speed multilayer printed circuit boards

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jingook Kim ; Inst. of Microelectron., Singapore ; Rotaru, M.D. ; Seungyong Baek ; Jongbae Park
more authors

As layout density increases in highly integrated multilayer printed circuit boards (PCBs), the noise that exists in the power distribution network (PDN) is increasingly coupled to the signal traces, and precise modeling to describe the coupling phenomenon becomes necessary. This paper presents a model to describe noise coupling between the power/ground planes and signal traces in multilayer systems. An analytical model for the coupling has been successfully derived, and the coupling mechanism was rigorously analyzed and clarified. Wave equations for a signal trace with power/ground noise were solved by imposing boundary conditions. Measurements in both the frequency and time domains have been conducted to confirm the validity of the proposed model.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:48 ,  Issue: 2 )