By Topic

Conformal method to eliminate the ADI-FDTD staircasing errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chai, M. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Tian Xiao ; Qing Huo Liu

The alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is an unconditionally stable method and allows the time step to be increased beyond the Courant-Friedrich-Levy (CFL) stability condition. This method is potentially very useful for modeling electrically small but complex features often encountered in applications. As the regular FDTD method, however, the spatial discretization in the ADI-FDTD method is only first-order accurate for discontinuous media; several researchers have shown that the errors can be very high when the regular ADI-FDTD method is applied to such discontinuous media. On the other hand, the conformal FDTD method has recently emerged as an efficient FDTD method with higher order accuracy. In this work, a second-order accurate ADI-FDTD method using the conformal approximation of spatial derivatives is proposed. This new scheme, called the ADI-CFDTD method, retains the second-order accuracy in both temporal and spatial discretizations even for discontinuous media with metallic structures, and is unconditionally stable. 2D and 3D examples demonstrate the efficacy of this method and its application in EMC problems.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:48 ,  Issue: 2 )