By Topic

Constrained band selection for hyperspectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chein-I Chang ; Dept. of Comput. Sci. & Electr. Eng., Univ. of Maryland, Baltimore, MD, USA ; Su Wang

Constrained energy minimization (CEM) has shown effective in hyperspectral target detection. It linearly constrains a desired target signature while minimizing interfering effects caused by other unknown signatures. This paper explores this idea for band selection and develops a new approach to band selection, referred to as constrained band selection (CBS) for hyperspectral imagery. It interprets a band image as a desired target signature vector while considering other band images as unknown signature vectors. As a result, the proposed CBS using the concept of the CEM to linearly constrain a band image, while also minimizing band correlation or dependence provided by other band images, is referred to as CEM-CBS. Four different criteria referred to as Band Correlation Minimization (BCM), Band Correlation Constraint (BCC), Band Dependence Constraint (BDC), and Band Dependence Minimization (BDM) are derived for CEM-CBS.. Since dimensionality resulting from conversion of a band image to a vector may be huge, the CEM-CBS is further reinterpreted as linearly constrained minimum variance (LCMV)-based CBS by constraining a band image as a matrix where the same four criteria, BCM, BCC, BDC, and BDM, can be also used for LCMV-CBS. In order to determine the number of bands required to select p, a recently developed concept, called virtual dimensionality, is used to estimate the p. Once the p is determined, a set of p desired bands can be selected by the CEM/LCMV-CBS. Finally, experiments are conducted to substantiate the proposed CEM/LCMV-CBS four criteria, BCM, BCC, BDC, and BDM, in comparison with variance-based band selection, information divergence-based band selection, and uniform band selection.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 6 )