By Topic

Spatiotemporal salient points for visual recognition of human actions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oikonomopoulos, A. ; Comput. Dept., Imperial Coll., London, UK ; Patras, I. ; Pantic, M.

This paper addresses the problem of human-action recognition by introducing a sparse representation of image sequences as a collection of spatiotemporal events that are localized at points that are salient both in space and time. The spatiotemporal salient points are detected by measuring the variations in the information content of pixel neighborhoods not only in space but also in time. An appropriate distance metric between two collections of spatiotemporal salient points is introduced, which is based on the chamfer distance and an iterative linear time-warping technique that deals with time expansion or time-compression issues. A classification scheme that is based on relevance vector machines and on the proposed distance measure is proposed. Results on real image sequences from a small database depicting people performing 19 aerobic exercises are presented.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 3 )