Cart (Loading....) | Create Account
Close category search window

Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Jin ; Dept. of Electr. & Comput. Eng. & Comput. Sci., Univ. of Cincinnati, OH, USA ; Yan Liao ; Minai, A.A. ; Polycarpou, M.M.

This paper considers a heterogeneous team of cooperating unmanned aerial vehicles (UAVs) drawn from several distinct classes and engaged in a search and action mission over a spatially extended battlefield with targets of several types. During the mission, the UAVs seek to confirm and verifiably destroy suspected targets and discover, confirm, and verifiably destroy unknown targets. The locations of some (or all) targets are unknown a priori, requiring them to be located using cooperative search. In addition, the tasks to be performed at each target location by the team of cooperative UAVs need to be coordinated. The tasks must, therefore, be allocated to UAVs in real time as they arise, while ensuring that appropriate vehicles are assigned to each task. Each class of UAVs has its own sensing and attack capabilities, so the need for appropriate assignment is paramount. In this paper, an extensive dynamic model that captures the stochastic nature of the cooperative search and task assignment problems is developed, and algorithms for achieving a high level of performance are designed. The paper focuses on investigating the value of predictive task assignment as a function of the number of unknown targets and number of UAVs. In particular, it is shown that there is a tradeoff between search and task response in the context of prediction. Based on the results, a hybrid algorithm for switching the use of prediction is proposed, which balances the search and task response. The performance of the proposed algorithms is evaluated through Monte Carlo simulations.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 3 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.