By Topic

A digital design flow for secure integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Tiri ; Intel Corp., Hillsboro, OR, USA ; I. Verbauwhede

Small embedded integrated circuits (ICs) such as smart cards are vulnerable to the so-called side-channel attacks (SCAs). The attacker can gain information by monitoring the power consumption, execution time, electromagnetic radiation, and other information leaked by the switching behavior of digital complementary metal-oxide-semiconductor (CMOS) gates. This paper presents a digital very large scale integrated (VLSI) design flow to create secure power-analysis-attack-resistant ICs. The design flow starts from a normal design in a hardware description language such as very-high-speed integrated circuit (VHSIC) hardware description language (VHDL) or Verilog and provides a direct path to an SCA-resistant layout. Instead of a full custom layout or an iterative design process with extensive simulations, a few key modifications are incorporated in a regular synchronous CMOS standard cell design flow. The basis for power analysis attack resistance is discussed. This paper describes how to adjust the library databases such that the regular single-ended static CMOS standard cells implement a dynamic and differential logic style and such that 20 000+ differential nets can be routed in parallel. This paper also explains how to modify the constraints and rules files for the synthesis, place, and differential route procedures. Measurement-based experimental results have demonstrated that the secure digital design flow is a functional technique to thwart side-channel power analysis. It successfully protects a prototype Advanced Encryption Standard (AES) IC fabricated in an 0.18-mum CMOS

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:25 ,  Issue: 7 )