By Topic

Multiobjective control of power plants using particle swarm optimization techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heo, J.S. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Lee, K.Y. ; Garduno-Ramirez, R.

Multiobjective optimal power plant operation requires an optimal mapping between unit load demand and pressure set point in a fossil fuel power unit (FFPU). In general, the optimization problem with varying unit load demand cannot be solved using a fixed nonlinear mapping. This paper presents a modern heuristic method, particle swarm optimization (PSO), to realize the optimal mapping by searching for the best solution to the multiobjective optimization problem, where the objective functions are given with preferences. This optimization procedure is used to design the reference governor for the control system. This approach provides the means to specify optimal set points for controllers under a diversity of operating scenarios. Variations of the PSO technique, hybrid PSO, evolutionary PSO, and constriction factor approach are applied to the FFPU, and the comparison is made among the PSO techniques and genetic algorithm.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:21 ,  Issue: 2 )