Cart (Loading....) | Create Account
Close category search window
 

Automatic temperature controller for multielement array hyperthermia systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Johnson, J.E. ; Dept. of Radiat. Oncology, California Univ., San Francisco, CA, USA ; Maccarini, P.F. ; Neuman, D. ; Stauffer, P.R.

This paper concerns the optimization and performance analysis of an automatic control algorithm for managing power output of large multielement array hyperthermia applicators. Simulation and corresponding measurement of controller performance in a solid tissue equivalent phantom model is utilized for analysis of controller response to dynamically varying thermal load conditions that simulate clinical treatments. The analysis leads to an optimum controller which demonstrates the ability to achieve a uniform and stable temperature profile over a large surface area regardless of surrounding thermal load. This paper presents several advancements to the performance of a previously published control routine, including: 1) simplified simulation techniques for thorough characterization of controller performance; 2) an optimization procedure leading to an improved hybrid control algorithm for maintaining optimal performance during periods of both "rising" and "steady-state" temperature; 3) performance analysis of a control algorithm tailored for large area hyperthermia treatments with a mulitelement array applicator. The optimized hybrid controller is applied to the conformal microwave array (CMA) hyperthermia system previously developed for heating large area surface disease such as diffuse chestwall recurrence of breast carcinoma, and shown to produce stable, uniform temperatures under the multielement array applicator for all thermal load conditions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.