By Topic

Hydrogen gas sensor using Pd nanowires electro-deposited into anodized alumina template

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyun Tae Kim ; Dept. of Chem. Eng., Sung Kyun Kwan Univ., Suwon ; Jun Sim ; Sung Min Cho

This paper demonstrates a new kind of hydrogen sensor using palladium (Pd) nanowires. Hydrogen sensors using Pd metal have usually been utilizing the incremental change in electrical resistance of Pd upon hydrogen incorporation. Unlike the conventional Pd hydrogen sensors, however, the electrical resistance of the present Pd nanowire sensor decreases when hydrogen is incorporated into Pd nanowires. It is considered to be due to swelling of the nanowires as the result of hydrogen incorporation and subsequent narrowing of gaps between the nanowires, even though each nanowire should have had the higher resistance inherently. Because of extraordinarily high surface area of nanowires, the performance of sensing the hydrogen concentration was found to superior by far to the conventional Pd sensors. The response and recovery times are quite fast to be about 0.7 and 20 s, respectively and the sensing range of 0.2 ~ 1% 1% hydrogen concentration is suitable for the hydrogen safety sensors. The sensor introduced in this paper is unique with regard to both the sensing mechanism and performance

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 3 )