By Topic

Learning weighted metrics to minimize nearest-neighbor classification error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paredes, R. ; Dept. de Sistemas Informaticos y Computacion, Univ. Politecnica de Valencia ; Vidal, E.

In order to optimize the accuracy of the nearest-neighbor classification rule, a weighted distance is proposed, along with algorithms to automatically learn the corresponding weights. These weights may be specific for each class and feature, for each individual prototype, or for both. The learning algorithms are derived by (approximately) minimizing the leaving-one-out classification error of the given training set. The proposed approach is assessed through a series of experiments with UCI/STATLOG corpora, as well as with a more specific task of text classification which entails very sparse data representation and huge dimensionality. In all these experiments, the proposed approach shows a uniformly good behavior, with results comparable to or better than state-of-the-art results published with the same data so far

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 7 )