By Topic

Visual analysis of gel-free proteome data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Linsen, L. ; Dept. of Math. & Comput. Sci., Ernst-Moritz-Arndt-Univ., Greifswald, Germany ; Locherbach, J. ; Berth, M. ; Becher, D.
more authors

We present a visual exploration system supporting protein analysis when using gel-free data acquisition methods. The data to be analyzed is obtained by coupling liquid chromatography (LC) with mass spectrometry (MS). LC-MS data have the properties of being nonequidistantly distributed in the time dimension (measured by LC) and being scattered in the mass-to-charge ratio dimension (measured by MS). We describe a hierarchical data representation and visualization method for large LC-MS data. Based on this visualization, we have developed a tool that supports various data analysis steps. Our visual tool provides a global understanding of the data, intuitive detection and classification of experimental errors, and extensions to LC-MS/MS, LC/LC-MS, and LC/LC-MS/MS data analysis. Due to the presence of randomly occurring rare isotopes within the same protein molecule, several intensity peaks may be detected that all refer to the same peptide. We have developed methods to unite such intensity peaks. This deisotoping step is visually documented by our system, such that misclassification can be detected intuitively. For differential protein expression analysis, we compute and visualize the differences in protein amounts between experiments. In order to compute the differential expression, the experimental data need to be registered. For registration, we perform a nonrigid warping step based on landmarks. The landmarks can be assigned automatically using protein identification methods. We evaluate our methods by comparing protein analysis with and without our interactive visualization-based exploration tool.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 4 )