By Topic

Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ng, H.P. ; NUS Graduate Sch. for Integrative Sci. & Eng. ; Ong, S.H. ; Foong, K.W.C. ; Goh, P.S.
more authors

We propose a methodology that incorporates k-means and improved watershed segmentation algorithm for medical image segmentation. The use of the conventional watershed algorithm for medical image analysis is widespread because of its advantages, such as always being able to produce a complete division of the image. However, its drawbacks include over-segmentation and sensitivity to false edges. We address the drawbacks of the conventional watershed algorithm when it is applied to medical images by using k-means clustering to produce a primary segmentation of the image before we apply our improved watershed segmentation algorithm to it. The k-means clustering is an unsupervised learning algorithm, while the improved watershed segmentation algorithm makes use of automated thresholding on the gradient magnitude map and post-segmentation merging on the initial partitions to reduce the number of false edges and over-segmentation. By comparing the number of partitions in the segmentation maps of 50 images, we showed that our proposed methodology produced segmentation maps which have 92% fewer partitions than the segmentation maps produced by the conventional watershed algorithm

Published in:

Image Analysis and Interpretation, 2006 IEEE Southwest Symposium on

Date of Conference:

0-0 0