Cart (Loading....) | Create Account
Close category search window
 

Generalized moment matching for the linear combination of lognormal RVs: application to outage analysis in wireless systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pratesi, M. ; Dept. of Electr. Eng., L''Aquila Univ., Italy ; Santucci, F. ; Graziosi, F.

Moving from the need for a simple and versatile method for outage computation in various contexts of interest in wireless communications, in this paper we propose a lognormal approximation for the linear combination of a set of lognormal random variables (RV) with one-sided random weights. The approximation is based on a generalization of the well known moment matching approximation (MMA) for the sum of lognormal RVs, and it allows quite simple handling of the power sum of interfering signals even in rather complicated scenarios. Specifically, composite multiplicative channel models with unequal parameters can be handled, and generic (unequal) correlation patterns for some channel components can be handled with reference to any pair of signals. At this stage of the computation, only moments of the random weights are required. The probability density function of the random weight for the useful signal component may be required in computing outage probability, and numerical methods may be only required to solve a single integral at this second stage. The suitability of the approximation is examined by evaluating outage performance for various values of system parameters in some contexts of interest, namely spread spectrum systems and typical reuse-based systems with composite Rayleigh-lognormal and Nakagami-lognormal channels.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:5 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.