By Topic

Analyzing split channel medium access control schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Deng ; Dept. of Comput. Sci., New Orleans Univ., LA, USA ; Han, Y.S. ; Haas, Z.J.

In this work, we analyze and evaluate the maximum achievable throughput of split-channel MAC schemes that are based on the RTS/CTS (ready-to-send/clear-to-send) dialogue and that rely on pure ALOHA or on p-persistent carrier sensing multiple access (CSMA) contention resolution techniques. Our results show that, when radio propagation delays are negligible and when the pure ALOHA mechanism is used, then for a network with relatively large number of nodes, the maximum achievable throughput of the split-channel MAC schemes is lower than that of the corresponding single-channel MAC schemes. When the split-channel MAC schemes employ the p-persistent CSMA mechanism, then they out-perform the corresponding single-channel schemes when the maximum end-to-end propagation delays are at least 25% of the transmission time of the control packets on the single shared channel.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:5 ,  Issue: 5 )