By Topic

Generation of a 4 × 100 GHz pulse-train from a single-wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Magne, J. ; Centre for Ultrahigh Bandwidth Devices for Opt. Syst., Univ. of Sydney, NSW, Australia ; Bolger, J. ; Rochette, M. ; LaRochelle, S.
more authors

In this paper, the design of a simple and practical repetition-rate multiplier based on superimposed-chirped fiber Bragg gratings (FBGs) is presented. A tenfold increase in the repetition rate of a mode-locked fiber source, by generating a 100-GHz optical pulse train from a 10-GHz train, is demonstrated experimentally. As compared with previous demonstrations, the superimposed FBG filter was specifically designed to decrease the duty cycle of the generated pulse train or, in other words, decrease the pulsewidth. In addition, a fiber nonlinear optical loop mirror (NOLM) is used to eliminate the pulse-to-pulse phase fluctuations in the output high-repetition-rate train and to achieve a wavelength-tunable transform-limited pulse sequence. Moreover, it is shown that nonlinear conversion using the NOLM can be used to simultaneously generate multiwavelength high-repetition-rate optical pulse trains (4 × 100 GHz in the example shown here).

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 5 )