Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Robust human detection within a highly dynamic aquatic environment in real time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
How-Lung Eng ; Inst. for Infocomm Res., Singapore ; Junxian Wang ; Wah, A.H.K.S. ; Wei-Yun Yau

This paper presents a real-time foreground detection method for monitoring swimming activities at an outdoor swimming pool. Robust performance and high accuracy of detecting objects-of-interest are two central issues of concern. Therefore, in this paper, a considerable amount of attention has been placed on the following aspects: 1) to establish a better method of modeling aquatic background, which exhibits dynamic characteristics with random spatial movements, and 2) to establish a method of enhancing the visibility of the foreground by removing specular reflection at nighttime. First, the development of a new background modeling method is reported. In the proposed approach, the background is modeled as a composition of homogeneous blob movements. With an implementation of a spatial searching process, the proposed method shows capability in associating and distinguishing movements caused by the background. Hence, this contributes to better performance in foreground detection. On the issue of enhancing the visibility of the foreground, a decision-based filtering scheme is proposed as a preprocessing step. A defined concept term, fluctuation measure, is defined for classifying each pixel to be one of the predefined types. This has allowed suitable spatial or spatiotemporal filters to be applied accordingly for color the compensation step. All of these developments are evaluated by testing live on a busy Olympic-size outdoor public swimming pool. Both qualitative and quantitative evaluations are reported. This provides a comprehensive study of the system.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 6 )