By Topic

A switching median filter with boundary discriminative noise detection for extremely corrupted images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pei-Eng Ng ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Kai-Kuang Ma

A novel switching median filter incorporating with a powerful impulse noise detection method, called the boundary discriminative noise detection (BDND), is proposed in this paper for effectively denoising extremely corrupted images. To determine whether the current pixel is corrupted, the proposed BDND algorithm first classifies the pixels of a localized window, centering on the current pixel, into three groups-lower intensity impulse noise, uncorrupted pixels, and higher intensity impulse noise. The center pixel will then be considered as "uncorrupted," provided that it belongs to the "uncorrupted" pixel group, or "corrupted." For that, two boundaries that discriminate these three groups require to be accurately determined for yielding a very high noise detection accuracy-in our case, achieving zero miss-detection rate while maintaining a fairly low false-alarm rate, even up to 70% noise corruption. Four noise models are considered for performance evaluation. Extensive simulation results conducted on both monochrome and color images under a wide range (from 10% to 90%) of noise corruption clearly show that our proposed switching median filter substantially outperforms all existing median-based filters, in terms of suppressing impulse noise while preserving image details, and yet, the proposed BDND is algorithmically simple, suitable for real-time implementation and application.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 6 )