By Topic

Lossless compression of color mosaic images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ning Zhang ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Canada ; Xiaolin Wu

Lossless compression of color mosaic images poses a unique and interesting problem of spectral decorrelation of spatially interleaved R, G, B samples. We investigate reversible lossless spectral-spatial transforms that can remove statistical redundancies in both spectral and spatial domains and discover that a particular wavelet decomposition scheme, called Mallat wavelet packet transform, is ideally suited to the task of decorrelating color mosaic data. We also propose a low-complexity adaptive context-based Golomb-Rice coding technique to compress the coefficients of Mallat wavelet packet transform. The lossless compression performance of the proposed method on color mosaic images is apparently the best so far among the existing lossless image codecs.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 6 )