By Topic

Catalyst-free GaN nanorods grown by metalorganic molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Shou-Yi Kuo ; Instrum. Technol. Res. Center, Nat. Appl. Res. Labs., Hsinchu, Taiwan ; C. C. Kei ; Chien-Nan Hsiao ; C. K. Chao
more authors

High-density GaN nanorods with outstanding crystal quality were grown on c-sapphire substrates by radio-frequency plasma-assisted metalorganic molecular beam epitaxy under catalyst- and template-free growth condition. Morphological and structural characterization of the GaN nanorods was employed by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM). These results indicate that the rod number density can reach 1×1010 cm-2 and the nanorods are well-aligned with preferentially oriented in the c-axis direction. Meanwhile, no metallic (Ga) droplet was observed at the end of the rods, which is the intrinsic feature of vapor-liquid-solid method. Nanorods with no traces of any extended defects, as confirmed by TEM, were obtained as well. In addition, optical investigation was carried out by temperature- and power-dependent micro-photoluminescence (μ-PL). The PL peak energies are red-shifted with increasing excitation power, which is attributed to many-body effects of free carriers under high excitation intensity. The growth mechanism is discussed on the basis of the experimental results. Catalyst-free GaN nanorods presented here might have a high potential for applications in nanoscale photonic devices.

Published in:

IEEE Transactions on Nanotechnology  (Volume:5 ,  Issue: 3 )