Cart (Loading....) | Create Account
Close category search window

Decision-feedback detection for block differential space-time modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng Du ; Dept. of Electr. & Comput. Eng., Alberta Univ., Edmonton, Alta., Canada ; Beaulieu, N.C.

Time variation on fading channels hinders accurate channel estimation in differential space-time modulation and deteriorates the performance. Decision-feedback differential detection is studied for block differential space-time modulation, and compared with conventional differential space-time modulation. It is observed that the proposed scheme does not suffer effective fading bandwidth expansion, as does the conventional scheme. An improved effective signal-to-noise ratio approach is proposed for analyzing the performance of the proposed scheme in time-varying flat Rayleigh fading. Theoretical analysis and simulations show the improved performance of the proposed scheme over the conventional scheme.

Published in:

Communications, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.