By Topic

Improved structured least squares for the application of unitary ESPRIT to cross arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. R. J. A. E. Kwakkernaat ; Eindhoven Univ. of Technol., Netherlands ; Y. L. C. Jong ; J. C. Bultitude ; M. H. A. J. Herben

A key problem in high-resolution multidimensional parameter estimation via unitary ESPRIT is to jointly solve a set of invariance equations by means of least-squares minimization. It has been shown previously that existing least-squares techniques fail when applied to the category of cross arrays, which consist of perpendicular uniform linear arrays crossing at the center of the array. Cross array geometries are of special interest because they provide a larger aperture and, hence, better resolution for a given number of array elements than other multidimensional uniform array geometries. This letter proposes an improved structured least-squares method that enables successful application of unitary ESPRIT to cross arrays. Results of simulated direction-of-arrival estimation experiments using a three-dimensional cross array indicate that considerable performance improvements can be achieved if the new method is used.

Published in:

IEEE Signal Processing Letters  (Volume:13 ,  Issue: 6 )