By Topic

Learning dynamic audio-visual mapping with input-output Hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, we formulate the problem of synthesizing facial animation from an input audio sequence as a dynamic audio-visual mapping. We propose that audio-visual mapping should be modeled with an input-output hidden Markov model, or IOHMM. An IOHMM is an HMM for which the output and transition probabilities are conditional on the input sequence. We train IOHMMs using the expectation-maximization(EM) algorithm with a novel architecture to explicitly model the relationship between transition probabilities and the input using neural networks. Given an input sequence, the output sequence is synthesized by the maximum likelihood estimation. Experimental results demonstrate that IOHMMs can generate natural and good-quality facial animation sequences from the input audio.

Published in:

Multimedia, IEEE Transactions on  (Volume:8 ,  Issue: 3 )