By Topic

Modeling individual and group actions in meetings with layered HMMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We address the problem of recognizing sequences of human interaction patterns in meetings, with the goal of structuring them in semantic terms. The investigated patterns are inherently group-based (defined by the individual activities of meeting participants, and their interplay), and multimodal (as captured by cameras and microphones). By defining a proper set of individual actions, group actions can be modeled as a two-layer process, one that models basic individual activities from low-level audio-visual (AV) features,and another one that models the interactions. We propose a two-layer hidden Markov model (HMM) framework that implements such concept in a principled manner, and that has advantages over previous works. First, by decomposing the problem hierarchically, learning is performed on low-dimensional observation spaces, which results in simpler models. Second, our framework is easier to interpret, as both individual and group actions have a clear meaning, and thus easier to improve. Third, different HMMs can be used in each layer, to better reflect the nature of each subproblem. Our framework is general and extensible, and we illustrate it with a set of eight group actions, using a public 5-hour meeting corpus. Experiments and comparison with a single-layer HMM baseline system show its validity.

Published in:

Multimedia, IEEE Transactions on  (Volume:8 ,  Issue: 3 )