Cart (Loading....) | Create Account
Close category search window
 

Recognition of facial expressions and measurement of levels of interest from video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper presents a spatio-temporal approach in recognizing six universal facial expressions from visual data and using them to compute levels of interest. The classification approach relies on a two-step strategy on the top of projected facial motion vectors obtained from video sequences of facial expressions. First a linear classification bank was applied on projected optical flow vectors and decisions made by the linear classifiers were coalesced to produce a characteristic signature for each universal facial expression. The signatures thus computed from the training data set were used to train discrete hidden Markov models (HMMs) to learn the underlying model for each facial expression. The performances of the proposed facial expressions recognition were computed using five fold cross-validation on Cohn-Kanade facial expressions database consisting of 488 video sequences that includes 97 subjects. The proposed approach achieved an average recognition rate of 90.9% on Cohn-Kanade facial expressions database. Recognized facial expressions were mapped to levels of interest using the affect space and the intensity of motion around apex frame. Computed level of interest was subjectively analyzed and was found to be consistent with "ground truth" information in most of the cases. To further illustrate the efficacy of the proposed approach, and also to better understand the effects of a number of factors that are detrimental to the facial expression recognition, a number of experiments were conducted. The first empirical analysis was conducted on a database consisting of 108 facial expressions collected from TV broadcasts and labeled by human coders for subsequent analysis. The second experiment (emotion elicitation) was conducted on facial expressions obtained from 21 subjects by showing the subjects six different movies clips chosen in a manner to arouse spontaneous emotional reactions that would produce natural facial expressions.

Published in:

Multimedia, IEEE Transactions on  (Volume:8 ,  Issue: 3 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.