By Topic

TreeDT: tree pattern mining for gene mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sevon, P. ; Dept. of Comput. Sci., Helsinki Univ. ; Toivonen, H. ; Ollikainen, V.

We describe TreeDT, a novel association-based gene mapping method. Given a set of disease-associated haplotypes and a set of control haplotypes, TreeDT predicts likely locations of a disease susceptibility gene. TreeDT extracts, essentially in the form of haplotype trees, information about historical recombinations in the population: A haplotype tree constructed at a given chromosomal location is an estimate of the genealogy of the haplotypes. TreeDT constructs these trees for all locations on the given haplotypes and performs a novel disequilibrium test on each tree: Is there a small set of subtrees with relatively high proportions of disease-associated chromosomes, suggesting shared genetic history for those and a likely disease gene location? We give a detailed description of TreeDT and the tree disequilibrium tests, we analyze the algorithm formally, and we evaluate its performance experimentally on both simulated and real data sets. Experimental results demonstrate that TreeDT has high accuracy on difficult mapping tasks and comparisons to other methods (EATDT, HPM, TDT) show that TreeDT is very competitive

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 2 )