By Topic

The JigCell Model Builder: a spreadsheet interface for creating biochemical reaction network models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vass, M.T. ; Dept. of Comput. Sci., Virginia Polytech. Inst. & State Univ., Blacksburg, VA ; Shaffer, C.A. ; Ramakrishnan, N. ; Watson, L.T.
more authors

Converting a biochemical reaction network to a set of kinetic rate equations is tedious and error prone. We describe known interface paradigms for inputing models of intracellular regulatory networks: graphical layout (diagrams), wizards, scripting languages, and direct entry of chemical equations. We present the JigCell Model Builder, which allows users to define models as a set of reaction equations using a spreadsheet (an example of direct entry of equations) and outputs model definitions in the Systems Biology Markup Language, Level 2. We present the results of two usability studies. The spreadsheet paradigm demonstrated its effectiveness in reducing the number of errors made by modelers when compared to hand conversion of a wiring diagram to differential equations. A comparison of representatives of the four interface paradigms for a simple model of the cell cycle was conducted which measured time, mouse clicks, and keystrokes to enter the model, and the number of screens needed to view the contents of the model. All four paradigms had similar data entry times. The spreadsheet and scripting language approaches require significantly fewer screens to view the models than do the wizard or graphical layout approaches

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 2 )