By Topic

The problem with threads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lee, E.A. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA

For concurrent programming to become mainstream, we must discard threads as a programming model. Nondeterminism should be judiciously and carefully introduced where needed, and it should be explicit in programs. In general-purpose software engineering practice, we have reached a point where one approach to concurrent programming dominates all others namely, threads, sequential processes that share memory. They represent a key concurrency model supported by modern computers, programming languages, and operating systems. In scientific computing, where performance requirements have long demanded concurrent programming, data-parallel language extensions and message-passing libraries such as PVM, MPI, and OpenMP dominate over threads for concurrent programming. Computer architectures intended for scientific computing often differ significantly from so-called general-purpose architectures.

Published in:

Computer  (Volume:39 ,  Issue: 5 )