Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

An Innovative Spam Filtering Model Based on Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Islam, M.R. ; Sch. of IT, Deakin Univ., Geelong, Vic. ; Chowdhury, M.U. ; Wanlei Zhou

Spam is commonly defined as unsolicited email messages and the goal of spam categorization is to distinguish between spam and legitimate email messages. Many researchers have been trying to separate spam from legitimate emails using machine learning algorithms based on statistical learning methods. In this paper, an innovative and intelligent spam filtering model has been proposed based on support vector machine (SVM). This model combines both linear and nonlinear SVM techniques where linear SVM performs better for text based spam classification that share similar characteristics. The proposed model considers both text and image based email messages for classification by selecting an appropriate kernel function for information transformation

Published in:

Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on  (Volume:2 )

Date of Conference:

28-30 Nov. 2005