By Topic

Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. -R. Haghifam ; Dept. of Electr. Eng., Tarbiat Modares Univ., Tehran, Iran ; A. -R. Sedighi ; O. P. Malik

A novel method for high-impedance fault (HIF) detection in distribution systems is presented. Using this method HIFs can be discriminated from isolator leakage current (ILC) and transients such as capacitor switching, load switching (high/low voltage), ground fault, inrush current and no-load line switching. Wavelet transform and principal component analysis are used for feature extraction/selection. A fuzzy inference system is implemented for fault classification and a genetic algorithm is applied for input membership functions adjustment. HIF and ILC data was acquired from experimental tests and the data for other transients was obtained by simulation of a real 20 kV distribution feeder using EMTP. Results show that the proposed procedure is efficient in identifying HIFs from other events.

Published in:

IEE Proceedings - Generation, Transmission and Distribution  (Volume:153 ,  Issue: 3 )