By Topic

Accurate approximation of Green's functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kourkoulos, V.N. ; Electr. & Comput. Eng. Dept., Univ. of Illinois, Urbana, IL ; Cangellaris, A.C.

A robust and computationally-expedient methodology is presented for accurate, closed-form approximation of the Green's functions used in the mixed-potential integral equation statement of the electromagnetic boundary value problem in planar stratified media. The proposed methodology is based on the fitting of the spectrum of the Green's function, after the extraction of the quasistatic part, making use of rational functions. The effectiveness and robustness of the proposed methodology rely upon the proper sampling of the spectrum in order to improve the accuracy of the rational function fit. The resulting closed-form approximation is in terms of both spherical and cylindrical waves. Thus, high accuracy is obtained in the approximation of the Green's function irrespective of the distance of the observation point from the source. The methodology is validated through its application to the approximation of the Green's function for a multi-layered, planar dielectric stack

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 5 )