Cart (Loading....) | Create Account
Close category search window
 

Phase shift bandwidth and scan range in microstrip arrays by the element frequency tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shafai, L. ; Dept. of Electron., Carleton Univ., Ottawa, Ont. ; Sharma, S.K. ; Shafai, L. ; Daneshmand, M.
more authors

In this paper, the far-field phase shift properties of microstrip patch antennas are investigated. It is shown that, similar to reflectarrays, the resonant nature of microstrip patches can be used to change the phase of the radiated field. This phase change can be caused by the dimensional change of the microstrip patch, or by a reactive loading of its cavity such as an aperture on its ground plane. However, the available phase shift is limited by the antenna impedance bandwidth. The problem is initially investigated for conventional patch antennas, determining the available phase shift range. It is then studied for a wideband E-slot microstrip antenna, showing a considerably larger phase shift range. Then, a micro-electro-mechanical (MEM) based ground plane membrane, activated by an electrode from below, is proposed to adaptively generate and control the required phase shifts. It provides a low loss, continuously variable phase shifter that can be used at high frequencies for beam scanning in small arrays

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.