Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Constrained shortest link-disjoint paths selection: a network programming based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Xiao ; Packet Design Inc., Palo Alto, CA, USA ; Thulasiraman, K. ; Guoliang Xue

Given a graph G with each link in the graph associated with two positive weights, cost and delay, we consider the problem of selecting a set of k link-disjoint paths from a node s to another node t such that the total cost of these paths is minimum and that the total delay of these paths is not greater than a specified bound. This problem, to be called the constrained shortest link-disjoint path (CSDP(k)) problem, can be formulated as an integer linear programming (ILP) problem. Relaxing the integrality constraints results in an upper bounded linear programming problem. We first show that the integer relaxations of the CSDP(k) problem and a generalized version of this problem to be called the generalized CSDP (GCSDP (k)) problem (in which each path is required to satisfy a specified bound on its delay) both have the same optimal objective value. In view of this, we focus our work on the relaxed form of the CSDP(k) problem (RELAX-CSDP(k)). We study RELAX-CSDP(k) from the primal perspective using the revised simplex method of linear programming. We discuss different issues such as formulas to identify entering and leaving variables, anti-cycling strategy, computational time complexity etc., related to an efficient implementation of our approach. We show how to extract from an optimal solution to RELAX-CSDP(k) a set of k link-disjoint s-t paths which is an approximate solution to the original CSDP(k) problem. We also derive bounds on the quality of this solution with respect to the optimum. We present simulation results that demonstrate that our algorithm is faster than currently available approaches. Our simulation results also indicate that in most cases the individual delays of the paths produced starting from RELAX-CSDP(k) do not deviate in a significant way from the individual path delay requirements of the GCSDP(k) problem.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:53 ,  Issue: 5 )