By Topic

Numerical analysis on compliance and electrical behavior of multi-copper-column flip-chip interconnects for wafer-level packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
E. B. Liao ; Nano/Microsyst. Integration Lab., Nat. Univ. of Singapore, Singapore ; A. A. O. Tay ; S. S. Ang ; H. H. Feng
more authors

This paper presents modeling and simulation results of a modified copper-column-based flip-chip interconnect with ultrafine pitch for wafer-level packaging, and the process and prototyping procedure are described as well. This interconnect consists of multiple copper columns which are electrically in parallel and supporting a solder bump. A simple analytical model has been developed for correlation between the interconnect geometry and the thermal fatigue life. In comparison to the conventional single-copper-column (SCC) interconnects, numerical analysis reveals that the multi-copper-column (MCC) interconnect features enhanced compliances and, hence, higher thermomechanical reliability, while the associated electrical parasitics (R, L, and C) at dc and moderate frequencies are still kept low. Parametric studies reveal the effects of geometric parameters of MCC interconnects on both compliances and electrical parasitics, which in turn facilitate design optimization for best performance. By using coplanar waveguides (CPWs) as feed lines on both chip and package substrate, a high-frequency (up to 40 GHz) S-parameter analysis is conducted to investigate the transmission characteristics of the MCC interconnects within various scenarios which combines various interconnect pitches and common chip and package substrates. An equivalent lumped circuit model is proposed and the circuit parameters (R, L, C, and G) are obtained throughout a broad frequency range. Good agreement is achieved for the transmission characteristics between the equivalent lumped circuit model and direct simulation results.

Published in:

IEEE Transactions on Advanced Packaging  (Volume:29 ,  Issue: 2 )