By Topic

A spectral clustering approach to underdetermined postnonlinear blind source separation of sparse sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Van Vaerenbergh, S. ; Dept. of Commun. Eng., Univ. of Cantabria, Santander ; Santamaria, I.

This letter proposes a clustering-based approach for solving the underdetermined (i.e., fewer mixtures than sources) postnonlinear blind source separation (PNL BSS) problem when the sources are sparse. Although various algorithms exist for the underdetermined BSS problem for sparse sources, as well as for the PNL BSS problem with as many mixtures as sources, the nonlinear problem in an underdetermined scenario has not been satisfactorily solved yet. The method proposed in this letter aims at inverting the different nonlinearities, thus reducing the problem to linear underdetermined BSS. To this end, first a spectral clustering technique is applied that clusters the mixture samples into different sets corresponding to the different sources. Then, the inverse nonlinearities are estimated using a set of multilayer perceptrons (MLPs) that are trained by minimizing a specifically designed cost function. Finally, transforming each mixture by its corresponding inverse nonlinearity results in a linear underdetermined BSS problem, which can be solved using any of the existing methods

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 3 )