By Topic

Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zafeiriou, S. ; Dept. of Informatics, Aristotle Univ. of Thessaloniki ; Tefas, A. ; Buciu, I. ; Pitas, I.

In this paper, two supervised methods for enhancing the classification accuracy of the Nonnegative Matrix Factorization (NMF) algorithm are presented. The idea is to extend the NMF algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. The first method employs discriminant analysis in the features derived from NMF. In this way, a two-phase discriminant feature extraction procedure is implemented, namely NMF plus Linear Discriminant Analysis (LDA). The second method incorporates the discriminant constraints inside the NMF decomposition. Thus, a decomposition of a face to its discriminant parts is obtained and new update rules for both the weights and the basis images are derived. The introduced methods have been applied to the problem of frontal face verification using the well-known XM2VTS database. Both methods greatly enhance the performance of NMF for frontal face verification

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 3 )