Cart (Loading....) | Create Account
Close category search window

Quantum-noise theory for terahertz hot electron bolometer mixers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kollberg, E.L. ; Dept. of Microelectron. & Nano Sci., Chalmers Univ. of Technol., Goteborg, Sweden ; Yngvesson, K.S.

In this paper, we first review general quantum mechanical limits on the sensitivity of heterodyne receivers. The main aim of the paper is to explore the quantum-noise (QN) properties of hot electron bolometric (HEB) mixers. HEB mixers have a characteristic feature not found in other mixers: based on the "hot-spot" model, the conversion loss varies along the length dimension of the bolometer, and some sections of the bolometer are essentially passive, in which little frequency conversion occurs. We analyze a quantitative distributed quantum-noise model of the HEB mixer, making use of simulated hot-spot model data, that takes into account the continuous variation of the sensitivity along the bolometer bridge. An expression for the HEB receiver noise temperature, including optical input loss, is derived. We find that the predicted double-sideband receiver noise temperature agrees well with the available measured data (up to 5.3 THz). The results of our analysis suggest that QN and classical HEB noise contribute about equally at 3 THz, while at higher terahertz frequencies QN dominates. QN thus appears to show measurable effects in existing HEB mixers and will be even more important to take into account as HEB mixers continue to be developed for higher terahertz frequencies.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.