Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Williamson, S.S. ; Electr. Power & Power Electron. Center, Illinois Inst. of Technol., Chicago, IL ; Lukic, S.M. ; Emadi, A.

From the point of view of overall hybrid electric vehicle (HEV) and fuel cell vehicle (FCV) drive train efficiency, the research focus is mainly on the efficiency analysis of the power train components, which prove to be an integral part of modern HEV and FCV drive trains. The critical portion of any HEV electrical system consists of a power electronic converter (inverter) and a suitable traction motor. Thus, the efficiency analysis of the inverter/motor is of prime importance for the calculation of the overall efficiency of the drive trains. This paper aims at modeling the efficiencies of the traction motor/controller through efficiency maps. Efficiency maps are a convenient way to represent motor drive systems of large and complex systems, like that of a HEV. The paper uses the advanced vehicle simulator (ADVISOR) software for the simulations of a large-sized car, similar to a Chevy Lumina, over the urban dynamometer-driving schedule and highway fuel economy test drive cycles. Furthermore, the paper investigates the traction motor efficiency maps and consequent overall drive train efficiencies of commercially available Honda Insight and Toyota Prius HEVs. In all the case studies, the aim is to analyze the overall drive train efficiency over the city and highway drive cycles based on the inverter/motor efficiency maps

Published in:

Power Electronics, IEEE Transactions on  (Volume:21 ,  Issue: 3 )