By Topic

Making the case for applications of switched reluctance motor technology in automotive products

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Krishnamurthy, M. ; Dept. of Electr. Eng., Texas Univ., Arlington, TX ; Edrington, C.S. ; Emadi, A. ; Asadi, P.
more authors

Switched reluctance machines (SRM) offer attractive attributes for automotive applications. These include robustness to harsh operational conditions, rugged structure, fault resilient performance, and a wide range of speed. The main debate over the adequacy of switched reluctance drives in automotive applications has often focused on efficiency and position sensorless control over the entire speed range, adaptation of control algorithms in the presence of parameter variations, and high levels of acoustic noise and vibration. The present paper demonstrates three key technologies developed over the past few years that have resulted in tangible improvements in the performance of SRM/generators (SRM/G) as related to the above areas of interest. This paper intends to illustrate the new possibilities and remaining challenges in applications of SRM in automotive industry. The proposed technologies have been validated by simulation and experimental results

Published in:

Power Electronics, IEEE Transactions on  (Volume:21 ,  Issue: 3 )