By Topic

Measuring benchmark similarity using inherent program characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joshi, A. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX ; Aashish Phansalkar ; Eeckhout, L. ; John, L.K.

This paper proposes a methodology for measuring the similarity between programs based on their inherent microarchitecture-independent characteristics, and demonstrates two applications for it: 1) finding a representative subset of programs from benchmark suites and 2) studying the evolution of four generations of SPEC CPU benchmark suites. Using the proposed methodology, we find a representative subset of programs from three popular benchmark suites - SPEC CPU2000, MediaBench, and MiBench. We show that this subset of representative programs can be effectively used to estimate the average benchmark suite IPC, L1 data cache miss-rates, and speedup on 11 machines with different ISAs and microarchitectures - this enables one to save simulation time with little loss in accuracy. From our study of the similarity between the four generations of SPEC CPU benchmark suites, we find that, other than a dramatic increase in the dynamic instruction count and increasingly poor temporal data locality, the inherent program characteristics have more or less remained unchanged

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 6 )