By Topic

A data-driven HAAR-FISZ transform for multiscale variance stabilization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fryzlewicz, P. ; Dept. of Math., Imperial Coll. London ; Delouille, V.

We propose a data-driven Haar Fisz transform (DDHFT): a fast, fully automatic, multiscale technique for approximately Gaussianising and stabilizing the variance of sequences of non-negative independent random variables whose variance is a non-decreasing (but otherwise unknown) function of the mean. We demonstrate the excellent performance of the DDHFT on Poisson data. We then use the DDHFT to denoise a solar irradiance time series recorded by the X-ray radiometer on board the GOES satellite: as the noise distribution is unknown, we first take the DDHFT, then use a standard wavelet technique for homogeneous Gaussian data, and then take the inverse DDHFT. The procedure is shown to significantly outperform its competitors

Published in:

Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on

Date of Conference:

17-20 July 2005