By Topic

Imposed constraints on the Smith-Waterman alignment algorithm for enhanced modeling of a single-molecule DNA sequencer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Humphrey, P.G. ; LICOR, Inc., Lincoln, NE ; Bashford, G.R.

An effort has been underway to develop a system for de novo sequencing of single DNA molecules with very long reads. The system operates by optically detecting the passage of fluorescently tagged DNA bases through a detection zone. A successful system would be revolutionary with respect to speed, read length, cost and minimized laboratory infrastructure. An important part of system development is modeling of the detection process. In particular, predicting the expected error from a set of sequencing parameters is helpful in system design. This paper describes variations on the Smith-Waterman algorithm for subsequence alignment used in a single-molecule detection model. The alignment algorithm is used to check the modeled output sequence generated from a known input sequence. Variations based on reasonable assumptions led to over an order of magnitude improvement in alignment speed

Published in:

Electro Information Technology, 2005 IEEE International Conference on

Date of Conference:

22-25 May 2005