By Topic

Theory of the optimally coupled Q-switched laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Degnan, J.J. ; NASA Goddard Space Flight Center, Greenbelt, MD, USA

The general equations describing Q-switched laser operation are transcendental in nature and require numerical solutions, which greatly complicates the optimization of real devices. Here, it is shown that, using the mathematical technique of Lagrange multipliers, one can derive simple analytic expressions for all of the key parameters of the optimally coupled laser, i.e. one which uses an optimum reflector to obtain maximum laser efficiency for a given pump level. These parameters can all be expressed as functions of a single dimensionless variable z, defined as the ratio of the unsaturated small-signal gain to the dissipative (nonuseful) optical loss, multiplied by a few simple constants. Laser design tradeoff studies and performance projections can be accomplished quickly with the help of several graphs and a simple hand calculator. Sample calculations for a high-grain Nd:YAG and a low-gain alexandrite laser are presented as illustrations of the technique

Published in:

Quantum Electronics, IEEE Journal of  (Volume:25 ,  Issue: 2 )