By Topic

Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: real application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mendoza, J. ; Dept. of Electr. Eng., Univ. of Concepcion, Chile ; Lopez, R. ; Morales, D. ; Lopez, E.
more authors

This paper proposes and evaluates a method that improves the adaptability and efficiency of genetic algorithms (GAs) when applied to the minimal loss reconfiguration problem. This research reduces the searching space (population) when a new codification strategy and novel genetic operators, called accentuated crossover and directed mutation, are used. This allows a drastic reduction of the computational time and minimizes the memory requirements, ensuring a efficiency search when compared to current GA reconfiguration techniques. The reduced population is created through the branches that form "system loops." This means that almost all individuals created for the GA are feasible (radial networks) generating topologies that can only be limited by the system's operational constraints. The results of the proposed reconfiguration method are compared with other techniques, yielding smaller or equal power loss values with less computational efforts.

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 2 )