By Topic

Cumulant-based stochastic nonlinear programming for variance constrained voltage stability analysis of power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schellenberg, A. ; Univ. of Calgary, Canada ; Rosehart, W. ; Aguado, J.A.

This paper proposes a Cumulant Method-based solution to solve a maximum loading problem incorporating a constraint on the maximum variance of the loading parameter. The proposed method takes advantage of some properties regarding saddle node bifurcations to create a linear mapping relationship between random bus loading variables and all other system variables. The proposed methodology is tested using a sample system based on the IEEE 30-bus system using random active and reactive bus loading. Monte Carlo simulations consisting of 10 000 samples are used as a reference solution for evaluation of the accuracy of the proposed method.

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 2 )